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The longitudinal susceptibility x“(a, w) of a spin-% planar ferromagnet is investigated.
The random-phase approximation is used and particular emphasis is placed on the long-wave-

length behavior,

The static susceptibility for temperatures in the vicinity of the Curie point

is calculated. Correlation lengths above and below T are obtained. In the region below T
the expression for xzz(ﬁ, w) is compared with the susceptibility of an ideal magnon gas. De-
partures from ideal-gas behavior near the Curie point are studied. The relevance of the find-
ings to recent hydrodynamic- and dynamic-scaling-law theories is discussed.

1. INTRODUCTION

The planar ferromagnet is one of the most in-
teresting of the less intensively studied magnetic
systems. The term planar refers to the fact that
the anisotropy of the Hamiltonian is such that the
system has an easy plane of magnetization perpen-
dicular to some preferred axis. Recently, there
has been theoretical research on the dynamical
properties of this system in the critical region
about the Curie point and in the hydrodynamic region
below T¢.!~%In addition to being a magnetic system
in its own right, the planar magnet has many fea-
tures which make it suitable as a model for He!
near and below the A point. This was pointed out
some time ago by Matsubara and Matsuda.* More
recently, Whitlock and Zilsel have also emphasized
the close connection between the two systems.® Un-
fortunately, there appears to be little experimental
work on crystals which come close to having the
properties of the ideal planar ferromagnet. If
anisotropic, most magnetic systems have one or
more easy axes of magnetization. It is hoped that
the theoretical interest in the planar systemswill
stimulate further experimental efforts.

In this paper, the study of the susceptibilities
of the spin-3 planar ferromagnet is continued. 8
The main interest is in the dynamic longitudinal
susceptibility X,,(q, @) (z is along the direction of
magnetization) in the region near and below the
Curie point. As a by-product, expressions for the
Curie temperature and the spontaneous magnetiza-
tion will be obtained. A Green’s-function formalism
first developed for isotropic ferromagnets by Liu”
and later extended by Tanaka and Tani® to ferromag-
nets (and antiferromagnets) with an easy axis of
magnetization is used. The essential approxima-
tion has come to be called the random-phase ap-
proximation (RPA). It is well known that the use
of the RPA leads to a description of the magnetic
system as an assembly of undamped quasiparticles
whose energies are renormalized in a self-con-

|

sistent manner. The absence of damping can be
remedied in principle by a higher-order decoupling
approximation. However, many features of real
systems, particularly those pertaining to the static
properties, are reproduced in a qualitative, if not
semiquantitative, fashion by the RPA. It is felt
for this reason that microscopic calculations of the
RPA type are useful, although it is anticipated that
they will be eventually superseded by more refined
theories.

The remainder of the paper is divided into six
parts. In Sec. II the essential features of the formal
calculation are outlined. The static susceptibility,
Xz+(d, 0) is studied in Sec. III, while in Sec. IV com-
ment is made on the dynamic behavior. Section V
consists of a discussion of the significance of the
results, where correlation of the findings with the
predictions of hydrodynamic- and dynamic-scaling-
law theories is done. In Appendix A, the Curie
temperature, the susceptibility above T, and the
spontaneous magnetization are calculated while in
Appendix B two complicated functions appearing
in Sec. II are displayed.

II. FORMAL CALCULATION

This section outlines the calculation of the longi-
tudinal susceptibility following the approach de-
veloped in Ref. 7. The Hamiltonian is written

=35, +V, (2.1)
where g, the intrinsic Hamiltonian, has the form

W= —h20Si -2 J,; 8- 8 - (K, -J,)SESt . (2.2)
i 1,7 t,§

The symbol % denotes the product gugzH, with H
being the external magnetic field. The symbols
J;;_and K;; denote exchange integrals, S is the spin
(1'S I=%), and the sum is over the N spins in the
lattice. A coordinate system is chosen such that
the magnetization is in the z direction and x is
perpendicular to the easy plane. The Hamiltonian
V describes the coupling of the spin system to a
space- and time-dependent external field. It is
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written
V= _fe-iwt+ etzlszeia- i ,
where € - 0+,

In order to calculate the longitudinal suscepti-
bility two Green’s functions Gi;(t) and Gj;(¢) are
introduced which are defined by the equations

G ()= -i(TSi(t)si(0)) , (2.4)

Gi(t)= -i{T SL()s.(0)). (2.5)
Here S, =S, +1iS,, and T denotes the time-ordering
operator. As shown in detail in Ref. 7, the explicit
time dependence of the Hamiltonian leads to a def-
inition of the expectation values (TS: (¢)S%(0)) in
terms of the time-development and density opera-
tors at t=~,

The RPA is introduced by replacing the operator
Si () with its expectation value (S:(¢)) =#; (£) in the
equations of motion for G*. The resulting equations
are then analytically contined to the imaginary time
() domain. At this point, both the Green’s function
and 7; are expanded in powers of f:
Giy=°Gi;+fGi;+0(F%), (2.6)

r;=0+fr; +0(f?), 2.7
where o is the equilibrium value of S, in the ab-
sence of the space- and time-dependent external
field. To solve the zero-order equation, °G*“ is
expanded in a Fourier series

"(;jj(T):]lv Z}% D963, w,,) et Fi-Tp-ient (3 )
['4 m

2.3)

where a runs over the Brillouin zone, B=1/kT,
and w,, = 2rm/ B with m taking on integer values
from minus to plus infinity. The following solu-
tions® are obtained:

°G*(q, wp) = 20(Ag +iw,)/ (W2 +wd) , (2.9)
96", wn) = 20By/ (w? +w3) , (2.10)
N

As a result
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where
Ag=0[2J(0)-J (@) - K@)]+7, (2.11)
By=0[K(@) -J@)], (2.12)
wi=A%- B}, (2.13)

with
JQ)=T, et Fitp 7, (2.14)
K@ =2 e ' ®i-# g, (2.15)
Making use of the relationship

Sisi=% -5}, (2.16)

which is a special property of the spin-3 system,
the self-consistent equations for 7; can be derived.
In lowest order

3 -0=G};(-0) (2.17)

in the limit 6 — 0+. The implications of Eq.
(2.17) are considered in detail in Appendix A.

The equations for the first-order Green’s func-
tions are far more complex. To solve them, the
Fourier transforms are introduced,

1 ~-> - I3 I3
16;(7):1715&26 = 27164y, Gy wyy) €' imide FymiopT
v (2.18)
(2.19)

(M= DG, w,) e Tt
N 3

After a lengthy calculation, an equation for 'G*
which involves '7(q; - Q,, w,) is obtained. It is pos-
sible to solve for the latter function by making use
of the first-order equation’

- 1 1 . - -
lr(q! wn):_ﬁ E E Z IG (aly ql “q) (")m)e{6 “m .
a-n (2. 20)

- - > > 1 - - - - > >
ly(qy wn):z Ul(qu q: —4q, wn)<1 +j\7‘§ {[K(ql —Q)+J(a1 - q) - ZJ(CI)] U1(Q1, q:-q (U,,)
1

g

- - - > 5
+ [K(CL - q)“J(‘i1 -q)] Uz(&n q; —q, ’*’n)}) s

where the functions U, and U, are given in closed
form by Eqs. (B1) and (B2).

As is apparent from the discussion in Sec. II of
Ref. 7, the dynamic susceptibility X,,(q, ) is ob-
tained by the analytic continuation of lr(a, w,) into
the complex frequency plane:

Xee @, ) =7 (q, iw - 5) . (2.22)

Equations (2. 21) and (2. 22) are the principal re-
sults of this section.

(2.21)

[
III. STATIC SUSCEPTIBILITY

In this section, the static susceptibility x,,(q, 0)
is examined. Recently, some controversy has
arisen over the connection between the static limit
of x,,(o], w), which is sometimes referred to as the
isolated susceptibility, and the thermodynamic
adiabatic and isothermal susceptibilities. Falk®
and Wilcox'? have established that the isothermal
susceptibility is bounded from above by the adiabatic
susceptibility, which in turn is bounded from above
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by the isothermal susceptibility. Although model
systems have been found for which the isolated sus-
ceptibility differs from the adiabatic, it has been
argued that for realistic systems they are identical
in the thermodynamic limit.!® (In the present analy-
sis, the distinction between isothermal and adiabatic
disappears for finite g since 3, ' fi (S!) =0 for

'&# 0.) Inlight of this, interpreting the expression
for x,,(' , 0) as an approximation to the susceptibil-

J

These two equations lead to the result

ity which would be measured in a hypothetical ex-
periment with a time-independent external field
is felt to be justified.

At this point, the analysis is limited to wave
vectors a such that the corresponding energies
wg are much less than 7. It is found that

Ul(al’ 527 0)= 402(4431 Aaz + Bil Biz)/nglwgg ’
U, @, Gz, 0) = 40%(Aq, By, + By Ag,)/ Bw§ w3, -

3.1)
(3.2)

A -1
Xee @ 0)=4ﬁi2 ¥ Auhy-1+ByBy- @—" [20(7(0) —J(&))+h]ﬁl 5 AyAy-1+BoBay-t 40 T 1) .
g;

2 .2
Wi wg-g

Above T in the limit k=0, k/c=1/x,, where X,
is theuniform-field susceptibility in the easy plane.
With the help of Eq. (A1), the following equation
is obtained:

. Nx,
Xal® O =15 TR =@

(3.4)

which is identical to the equation for X, ((i, 0) de-
rived in Ref. 1. An approximate expression for
X. which is appropriate near the Curie point is
given in Eq. (A4).

Below the ordering temperature we make use of
Eq. (A2) which leads to

- Xe (@, )
e @ 0= 30~ T@IN Xee@, 0, + (L~ B/
(3.5)
where f;=1/kT; and

(A7 Az..3+Bg,Bs._3)

402 41474, -4 #4174 -4
0)=—r 2. , 3.6
xu(’y )t B y w§1w§1-¢ (3.6)

is the static susceptibility of an ideal magnon gas.
In the long-wavelength limit it is possible to
write

Ay=-B,, 3.7
wz=20¢q , (3.8)
where
c=D"?[J(0) - K(0)]"/?a, (3.9)
with D being defined by
J(0) - J(@) = Da’q® + O(g?) , (3.10)

with a®=V/N, V being the volume of the system.
As a result!!

2

1 0§, “G-1 AN T gy
(3.3)

[
Alv 1 dq A%V
LT L A . LA

Xe@ O ~30037 o | TG -9° " B260°0%
(3.11)

Thus, below T, the susceptibility can be written

_ N qa -
X0, 0= 32D%qa(B - Bc) (1 "16D(g- Bc)> )
(3.12)

Up to this point the calculations have been carried
out for finite temperatures with the restriction
wg<kT. 1t is apparent that in this limit, X,(q, 0)
diverges as 1/q when g approaches zero. Quite
different behavior is obtained if the susceptibility
is evaluated at absolute zero. At T=0, X, (q, 0),
can be written

thr: 0); =Al2)2 :

8 YW -1(Wg, + Wg-)

(3.13)

The evaluation of the integral in (3.13) is straight-
forward with the result

_AY*N(-1ng)

Xll(a’ 0),— 8V 27°D

(3.14)
in the limit ¢- 0.

The finite value of x,,(" , 0); reflects the fact that
the spins have a small zero-point motion, and hence
are susceptible to enhanced alignment by an ex-
ternal field. Such is not the case for isotropic fer-
romagnets and ferromagnets with an easy axis of
magnetization which are in a state of maximum
spin alignment at T=0. For these systems, the
susceptibility is zero at T'=0.

IV. DYNAMIC SUSCEPTIBILITY

In this section the long-wavelength behavior of
the dynamic susceptibility in the region below T
is examined. Consider first, the numerator of
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Eq. (2.21). As is to be anticipated from the dis-
cussion in Sec. III, the numerator, when analytical-
ly continued, yields the dynamic susceptibility of
the ideal magnon gas x,,(ci, w);. Thus,

Xu(a’w)l=2 Ul(abal'a’ iw-li) . (4-1)
4

At long wavelengths, where w;=20cq, the imaginary
part of the susceptibility in closed form (2=0) can
be written

" ~ N Sinhiﬁlw+wq|>
Xet @ w)’_1617D2qaﬂ n(sinh%ﬁlw —wgl) (4.2)

At finite temperatures, X,.(q, w); has a logarithmic
singularity at w =+ w3. In the zero-temperature
limit, the following result is obtained:

" _ N _ _
Xu@w)——‘———‘Mﬂqua (lw+wgl —lw=-wgl),

which is the counterpart of Eq. (3.14). The weak
singularity is seen to disappear at 7' =0.

As T approaches T, corrections to (4.2) become
important for all but the longest wavelengths.
Something of the nature of these corrections can be
inferred by an approximate evaluation of the denom-
inator of the right-hand side of (2.21). After re-
placing w, by iw — 8, the denominator of (2.21) be-

comes (g~ 0)

B i02DA%wa’
1= ~7@ocrs 4.3)

after having approximated the real part by its
value at w=0.

Combining (4. 3) and (4.1), an approximate ex-
pression for x,,(q, @) is obtained,

Xg;(., w)l

x"((i’w)z(l—ﬁ’c/ﬁ)(l—iw‘r) ’ @9
where 7 is given by
2.5
DAga (4.5)

7= 3210%C (B - o)
As is apparent from (4.2), the susceptibility of the
ideal magnon gas depends on frequency only in the
ratio w/wg. Thus, if wyT<1,

_Xea(@ @)
S

At low temperatures, 7 approaches zero so that
the condition w;7<< 1 is satisfied over the entire
Brillouin zone. Near the Curie point, 7 becomes
very large and the condition wz7<<1 can only be
satisfied in a vanishing region about q=0. The
significance of this result will be discussed in
Sec. V.

(4.8)

V. DISCUSSION

The most interesting aspects of the calculation
pertain to the behavior near the Curie point. The
findings for the static susceptibility can be sum-

marized as follows:

2
R I (5.1)
£II
—=<
Xer(@ 00 =), T< T (5.2)

where £,, the correlation length for fluctuations in
S, above T, is given by

£ =(2Dx,)%a (5.3)

-2
4D7 (3c - ﬁ) ’
with a=(V/N)'/3 i.e., the cube root of the volume
per spin. Also, &, the correlation length for
fluctuations in S, below T, is given by

w_ DAgas _ a
<" 16c%*(8-Bc) ~ 16D(B - Bc)
Below T in addition to £;, one can define a sec-
ond correlation length &, which characterizes the
fluctuations in S,,.12 In the notation of this paper
it is written

(5.4)

025: =_l &m(’, o)eia-?
rNE T g 6.9
In the RPA, X,,(q, 0) can be written®
N N
X,,,,(: 0)_ Z[J(O) _J(a)] - Zquaz (5. 6)

for small q. From (5.5) and (5. 6), the result is

£;=a/81DB0% , (5.7)
which in light of (A4) reduces to
4= B (0)a/12n(8~ Bc)D . (5.8)

An interesting feature of the calculation relates
to the ratios of the correlation lengths for temper-
atures AT above and below T,

E(Te - AT) =5mE,(To + AT) (5.9)
1o - am) =229 gur, ) (5.10)

As for the dynamic longitudinal susceptibility,
the results indicate that B~ 8., the ideal (but re-
normalized) spin-wave behavior is restricted to a
vanishing region about the center of the zone where
the condition w37« 1 can be satisfied. Making use
of (3.8) and (5.4), 7 can be rewritten as

7= Eq/ 1wy . (5.11)

Equations (4.4), (4.6), and (5.11) show that there
is a significant difference in the dynamics of the
longitudinal fluctuations between the two regions
qt¢<<1 and g£;21. This difference mirrors a
corresponding difference in the static correlation.
The behavior of x,,(q, w) for T< T, is similar
to what is postulated in the dynamic-scaling-law
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hypothesis.!? According to scaling-law theory,
below the ordering temperature the spin-wave pic-
ture is valid as long as g£{<< 1. For g&¢21 the
dynamical behavior is more complex. However,
the characteristic frequency wg, which in the
present analysis may be defined by the integral

w 00
Lo o @ 0V o=t [Jo 4@ 0 do,  (5.12)
is predicted to be of the form ¢*Q(g;). Since w; is
proportional to ¢®/2(g£Y%)-1/2 and 7 to £°/2 it is ap-
parent that the characteristic frequency obtained
with the expression for x,.(d,®), (4.4), is of the
form predicted by the dynamic-scaling hypothesis
with z=% and 2(x) <x"1/2 as x-0. Furthermore,
the ¢*/2 behavior is in agreement with the predic-
tions of Ref. 2.

1t should be noted that the RPA can only reflect
scaling-law behavior at finite temperatures below
T. since the quasiparticle energies vanish for
T= T, (h=0). Consequently, the theory has no
dynamical content above the ordering temperature.

In the RPA, the longitudinal susceptibility of a
planar ferromagnet is quite similar to the longitu-
dinal susceptibility of an isotropic ferromagnet and
the longitudinal staggered susceptibility of an iso-
tropic antiferromagnet. In all three cases, a be-
havior is obtained of the form® !

Xee (@, 0)x £2/(1 +g2£2) (5.13)

for the critical region above T, while below T
they all vary according to

Xee (@, 0)x £¢/q(1 +qEY). (5.14)

The magnitudes of the correlation lengths are
not the same for the three systems. However, in
each case we obtain the relationship

A(Te — AT)=578,(Tc + AT) . (5.15)

The susceptibility of the ferromagnet with an easy
axis of magnetization has the Ornstein-Zernike form
both above and below T, with the correlation lengths
being related by®

T - AT)=(1/V2) & (T + AT) .

The peculiar behavior of the susceptibility of the
easy-axis ferromagnet, which has the form pre-
dicted by molecular field theory, can be traced to
the presence of an anisotropy gap in the spin-wave
spectrum at ¢ =0, which is not found in the isotropic
and planar systems.

The dynamic susceptibility below T, also has
many features in common with the dynamic (stag-
gered) susceptibility of the isotropic (anti-) ferro-
magnet. For sufficiently small wave vectors,
Xee(Q, w) is approximately equal to X.(q, w);, the
ideal spin-wave susceptibility. In each case,
Xee(Q, w); has a logarithmic singularity at w == wg,

809

where wy is the corresponding spin-wave frequen-
cy. 1314

Although the excitations of the system have an
infinite lifetime in this calculation, the relationship
between frequency and susceptibility is the same
as found in the hydrodynamic theory of spin waves.?
According to the theory developed in Ref. 3, the
spin-wave theory in the hydrodynamic (collision-
dominated) region can be written in terms of the
static susceptibilities

No

“ TG 0%, G 0T 619
In the RPA, ¥, is given by (5.6) and ¥, by®
N
%@ 0) =55y TR ) (5.17)

With the help of (5.6) and (5.17), Eq. (5.16) can
be written

wg=20[7(0) - J@]"/2 [7(0) - K@]"/?,

which is the same as the frequency given by Eq.
(2.13). This result is not surprising since in the
RPA the static susceptibilities are the zero-fre-
quency limits of dynamic susceptibilities which
involve only three parameters o, A;, and By, the
last two being directly related to frequency as
shown in (2. 13).

On the other hand, the behavior of X,,(q, w) in the
hydrodynamic theory is not the same as is found in
the present calculation which is appropriate only
to the “collisionless” regime. In Ref. 3, X, (q, w)
is written as the sum of two terms, one of which
is diffusive in character and reflects the coupling
of the magnetization and energy-density fluctua-
tions. The other term is inversely proportional
to ¢, but has a frequency dependence characteristic
of the time it takes to reach a state of local thermal
equilibrium.

Finally, we would like to comment briefly on the
connection between the planar ferromagnet and
various models of He*#%18 [ the theories de-
veloped in Refs. 4, 5, and 15, models are formulated
which are formally identical to a spin-3 planar fer-
romagnet in an external field perpendicular to the
easy plane. In particular, the Hamiltonian adopted
by Whitlock and Zilsel® can be written in our nota-
tion in the form

(5.18)

=-2J28 8§ -2J -K) L SS]
(i§) (ij)

-2Z(J -K)2JS}
i

where (ij) stands for nearest-neighbor pairs, and

Z is the number of nearest neighbors. Further
aspects of the quantal lattice-gas analogy are re-
viewed by Fisher.!® In a recent paper on critical
dynamics, Kawasaki has outlined a theory applicable
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near the A point which is closer in spirit to the
present calculation.!” In his model, S,, S,, and

S, are identified with the entropy density and the

two components of the order parameter. He derives
approximate equations of motion for the fluctua-
tions in these variables which are equivalent to the
equations of motion of the spin operators in the ab-
sence of an external field.

APPENDIX A

In this Appendix, some of the results which follow
from Eq. (2.17) are displayed. This equation can
be written®

1 _ 1545

1
20 Nawa (A)

cothz Bw; .

By the usual arguments, ® it is possible to derive
an expression for the inverse Curie temperature
of the form
4o A,
BC - N? wg .
In the case of a fcc lattice with nearest-neighbor
interactions, use can be made of the theory of Flax
and Raich!® to evaluate the integrals in (A2),

Bc=2.69/J(0), K(0)/J(0)=1 |,
Bc=2.37/J(0), K(0)/J(0)=3 |,
Bc=2.35/J(0), K(0)/J(0)=0

(A2)

HUBER 3

The values for K(0)/J(0)=1, 0 are to be compared
with the values obtained from series expansions
(Refs. 19 and 20, respectively)

Bc=2.99/J(0), K(0)/J(0)=1,
Bc=2.65/J(0), K(0)/J(0)=0.

It is apparent that the anisotropic terms in the
Hamiltonian raise the ordering temperature. This
can be attributed to a limiting of the spin fluctua-
tions perpendicular to the easy plane, as reflected
in the fact that x,,(0, 0) remains finite at 7.

The magnetization near the Curie point takes the
form

0?=[3/2B:J(0)](1 - Bo/B).

Immediately above T, the uniform-field suscepti-
bility is given by
1

%" 32Dk (8o /B 1)

The behavior shown in Eqs. (A3) and (A4) is similar
to what is found for the isotropic ferromagnet in

the RPA."!! However, the divergence in the sus-
ceptibility is more severe than is inferred from
series expansions. In particular, when K(0)/J(0)
=0, Betts ef al. find®

(A3)

(A4)

X (T - Tc).l‘35

APPENDIX B

We have

Uy(ay, Gy @) Ny +1 (Ail - “’al)(Aaa ~ Y4 - iw,) + B, By,

Ngy + 1 [(Ag, — wg, +iw,)(Ag, - w3)) + By, By,

40° 2w.. Y We 2 . N\2
4 wf.lz- (wg, +iw,) a Wi - (wa2 -iw,)
. n N=~ . . .
+12v_1 (Ac.‘1 + wﬂl)(Aaz + Wy, = iw,) +Bg, Big - q, (A61 + W, + Zw")(Aig + qu) +BalBa2
Ws - )2 Ws 2 o )2
i, wga = (g, —iw,) dz w? - (wg, +iw,)

where N3=(¢*“1 —1)?, and

Up(dy, day @) _Nyy+1 [ (A = wg)By, +(Ag, — w5 —iw,)By N+l (Ag, = wg, +w,) B+ (Ag, = wg,) By,
402 2w. . 2wy 2 Y
a1 wéz—(wal+zwn)2 %2 wil -'(waz‘l‘*’n)
N, [(Agy+ wai) By, + (A, + g, ~iw,) By _Niz_ (Agy + wg, +iwy) By, +(Ag + wg) By .
+ - . P) e
2‘”51 wsz—(wal —an)z zqu wal"(wﬁz+zwn)
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Canted Spin Phase in Gadolinium Iron Garnet
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The behavior of ferrimagnetic garnets with three magnetic sublattices in an external field
has been investigated. In the field-temperature plane we determined the stability limits of
the collinear phases with respect to angle formation between the various sublattice moments.
The application of our molecular-field analysis to gadolinium iron garnet (GdIG) shows that
the angle formation between the two strongly coupled iron sublattices cannot be neglected.
By measuring the Faraday effect in fields up to 10 kOe, we were able to observe the angled
spin phase in GdIG in the vicinity of the compensation point.

I. INTRODUCTION

A magnetic field applied to a ferrimagnet in
which the sublattice moments are collinear tends
to align all the moments parallel to itself, in op-
position to the exchange interactions which try to
maintain the ferrimagnetic antiparallel configura-
tion. Under certain conditions of field and tempera-
ture, this competition canresultinspin configurations
in which the individual sublattice moments form
angles with each other and with the field even in
isotropic crystals. This phenomenon has been
studied in a number of investigations both experi-
mentally and theoretically.~*

In the case of three-sublattice iron garnets, one
expects that with increasing field, angles are first
formed predominantly between the rare-earth sub-
lattice moment and the net iron moment. Only at
much higher fields is the antiparallel alignment of
the iron moments broken up. This assumption is
based on the fact that the exchange coupling of the
rare-earth sublattice to the iron sublattices is weak
compared with the dominant coupling between the
two iron sublattices. Thus, in the past, molecular-
field theory has been applied to calculate the mag-
netic response of garnets to an external field, 13
but angle formation between the two iron moments

has been neglected. This simplifies the theoretical
treatment, and the instability criterion for the col-
linear phases is a two-sublattice relationship. !
Even in small fields, however, the simplified treat-
ment can lead to wrong results, especially if the
compensation point does not occur at very low tem-
peratures.

In the present work (Sec. II) we derive the correct
instability criterion for a three-sublattice system.
This criterion, together with the molecular-field
equations, determines the phase boundaries in the
field-temperature plane. As an application, we
calculate the magnetic-phase diagram for gadolinium
iron garnet (GdIG), the magnetic properties of which
can be reasonably well described by a simple three-
sublattice model. As all magnetic ions in this
material have an S ground state, crystal-field and
anisotropy effects are small® and can be neglected. ®
The values of the molecular-field coefficients are
available from various sources; in our calcula-
tions for GAIG we use Anderson’s set” which was
obtained from a fit of magnetization measurements.
The results agree well with our Faraday rotation
measurements which are reported in Sec. III. The
Faraday rotation is very sensitive to changes in
the spin configuration and therefore provides an
excellent tool for detection of the boundaries of the



